

Figure 1. Concentration vs. time plot for vinylidenecyclobutane (1).
Scheme 1. Mechanism for Vinylidenecyclobutane (1) Photoisomerization

to trans isomerization of cyclooctene. ${ }^{14}$ The relative efficiencies (and slopes) of butatriene and ethylene are similar as one would expect if a common mechanistic pathway, possibly photochemical [$2+2$] cycloreversion, is involved. Especially intriguing is potential participation by the terminal π bond of the allene with concerted weakening of both the remote and proximate σ bonds

[^0]of the cyclobutane ring in a photochemically allowed $\left[{ }_{\pi} 2_{s}+{ }_{\pi} 2_{s}\right.$ $+{ }_{\sigma}{ }_{\mathrm{s}}+{ }_{\sigma} 2_{\mathrm{s}}$] process equivalent to a Huckel eight-electron cyclic array (path a). ${ }^{15}$ The photocycloreversion would then be related

to the postulated ${ }^{16}\left[\pi_{\mathrm{s}}+\left({ }_{\pi} 2_{\mathrm{s}}+{ }_{\pi} 2_{\mathrm{s}}\right)\right]$ thermal cycloaddition of olefins to allenes.

An alternate, stepwise version (path b) can be viewed as analogous to α-cleavage in $n-\pi^{*}$ ketones except that with an allene the one-electron "hole" is created at a π-bond. Thus, delocalization of excitation from the allenic moiety into the four-membered ring possibly induces one-bond cleavage and subsequent fragmentation. Such $\sigma-\pi$ overlap might relate to $1,2-\mathrm{C}$ migration giving 4 vs. $1,2-\mathrm{H}$ shift to 2 and 3. Whether carbon or hydrogen migrates could then depend on which allenic π-bond is most heavily weighted in the S_{1} wave function. However, relief of strain appears to be the dominant factor, since alkyl migration decreases in efficiency relative to $1,2-\mathrm{H}$ shift with increasing ring size in vinylidenecycloalkanes and is not observed with the six-membered ring analogue. ${ }^{17}$ The mechanism depicted in Scheme I reasonably accounts for products 2-4, although variations ${ }^{6}$ and alternatives ${ }^{3}$ may need to be considered pending the outcome of related studies of 2 and independent generation of vinylcarbenes using diazoalkenes.

Acknowledgment. Support of this research by a Cottrell Grant from Research Corporation, the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the Office of Research Support, Marquette University Graduate School, for a summer fellowship and a regular research grant, is gratefully acknowledged. We also acknowledge departmental funding by NSF Grant TFI-8020268 for an NMR spectrometer and NSF Grant PRM-8201885 for a UV spectrometer.

[^1]
Additions and Corrections

Dynamics at the Active Site of Bis(4-fluorophenyl)carbamoyl- α chymotrypsin [J. Am. Chem. Soc. 1983, 105, 4793]. M. CAIRI and J. T. Gerig*

Pages 4793 and 4795: Equations 1 and 2 should be interchanged.

Organoaluminum-Promoted Beckmann Rearrangement of Oxime Sulfonates [J. Am. Chem. Soc. 1983, 105, 2831]. Keiji Maruoka, Tohru Miyazaki, Mamoru Ando, Yasushi Matsumura, Soichi Sakane, Kazunobu Hattori, and Hisashi Yamamoto*

Page 2837: In Table VI the amine 90 should be derived from
the oxime sulfonate 9; 92 from 11; and 94 and 95 from 16, respectively.

Bis($\mathbf{2 , 2}^{\prime}$-bipyridyl)diisopropoxymolybdenum(II). Structural and Spectroscopic Evidence for Molybdenum-to-Bipyridyl π^{*} Bonding [J. Am. Chem. Soc. 1981, 103, 4945]. M. H. Chisholm,* J. C. Huffman,* I. R. Rothwell, P. G. Bradley, N. Kress, and W. H. Woodruff*

Page 4946: The following bond distances (\AA) should be included in Table II.
$\mathrm{C}(28)-\mathrm{N}(33)=1.381$ (4), $\mathrm{C}(28)-\mathrm{C}(29)=1.415$ (4), $\mathrm{C}-$ (29) $-\mathrm{C}(30)=1.364(4), \mathrm{C}(30)-\mathrm{C}(31)=1.411(5), \mathrm{C}(31)-\mathrm{C}(32)$ $=1.359(4), \mathrm{C}(32)-\mathrm{N}(33)=1.381$ (4).

[^0]: (14) Schuchmann, H.-P.; von Sonntag, C.; Srinivasan, R. J. Photochem. 1981, $15,159$.

[^1]: (15) Zimmerman, H. E. Accts. Chem. Res. 1971, 4, 272.
 (16) (a) Pasto, D. J. J. Am. Chem. Soc. 1979, 101, 37. (b) Pasto, D. J., Warren, S. E. Ibid. 1982, 104, 3670. (c) Pasto, D. J.; Heid, P. F.; Warren, S. E. Ibid. 1982, 104, 3676. (d) Pasto, D. J.; Heid, P. F J. Org. Chem. 1982, 47, 2204.
 (17) Steinmetz, M. G.; Stark, E. J.; Yen, Y.-P. J. Org. Chem., manuscript in preparation.

